Innovation Opportunities and Challenges

- Digital Twin Taking Flight
- AERALIS case study

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior witten consent of Thales - ® Thales 2022 All rights reserved

Introduction to Digital twins

Definitions are important

'A Digital Twin is a virtual representation of a connected physical asset'

Other definitions exist...

Digital Twins are not new

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales - © Thales 2022 All rights reserved.

Digital Twin use cases in the military context

Assessment Demonstrate Manufacture In-service **D**isposal Concept Unresolved issues in design: Will produce complexity in delivery: And in use (for next 25+ years): Maturity problems More complex supply chain More skilled operators Over-complicated design Rework More management needed Under performance Several base-lines Reduced availability /reliability Documentation issues Variable performance Under performance CADMID CYCLE FOR MILITARY SYSTEMS Concept changes Initial Model Refined Model Manufactured item Approved design **Digital Thread of Data** DT for DT for DT for DT for Training DT for DT for DT for mass performance Prototype predictive design aualification manufacture manufacture maintenance testing analysis

THALES GROUP OPEN / RELEASABLE TO PUBLIC

THALES

Building a future we can all trust

modified, adapted, published, translated, in any way, in whole or in the prior written consent of Thales - © Thales 2022 All rights reserved

Example – Platform design, manufacture & test using Digital Twins

By KT-DES - Own work, CC BY-SA 4.0,

Navantia F110 Frigate, 1st to be designed and built using Digital Twins

Digital Evaluation and Test Range

AERALIS modular aircraft system – digitally engineered from the start

THALES GROUP OPEN
/ RELEASABLE TO PUBLIC

Digital Twins have to be interoperable...

Multi-Domain Integration (MDI)

- Defence does not operate in silos
- Platforms and systems interoperate both inside and outside countries
- 'System of Systems' approach

A hypothetical scenario enhanced by Multi-Domain Integration

Operation Ind

Oper

Digital Twin based test range connected for 'plug and play' testing and certification activities

THALES GROUP OPEN / RELEASABLE TO PUBLIC

..But it's not simple

Intellectual Property and Ownership

Dynamic nature of Digital Twins

Data standards and interoperability

Security Standards

Fidelity and abstraction

Task group 205

NB. Participant nations & companies correct as of 4/10/22

Building a future we can all trust

Open architectures and a standards based approach is important, NATO task group started in October 22 to solve these issues

THALES GROUP OPEN / RELEASABLE TO PUBLIC

THALES

A Digital Twin Approach:

- Who / What is AERALIS The Platform
- Thales AircrewNext The Human
- Core AERALIS Platform and Environment Simulation (CAPES)
 - The Digital Twin

THE FUTURE OF AIR FORCE FLEETS >50% 'UNCREWED' 'NAVAL' 85% NAVAL VARIANTS UNCREWED ISTAR AGGRESSOR UNCREWED TANKER REDUCTION AERALIS 'TRAINER' **BREAKING THE COST CURVE** BASIC TRAINER AEROBATIC TEAM 'COMBAT' F-22 UNCREWED WINGMAN UNIT COST (US\$ MILLIONS) F-15 F-35 SAME F-16 Common Core Fuselage F-104 F-86 2010 2020 **ADOPT NEW RECYCLABLE & NEW MANUFACTURE** RECONFIGURE NOT REPLACE A SUSTAINABLE PATH TO NET ZERO **PROCUREMENT** CERTIFICATION SUPPORT MAINTENANCE **TRAINING** SINGLE DIGITAL TRUTH: AERSIDE™

Innovation
Exploitation
Digital Twin / MBSE

Data Analytics with Digital Trust

The Individual Learning Journey

AircrewNext

Next generation air crew training for the future of air operations

Collective Competence

Trusted
Artificial Intelligence

A DATA-DRIVEN REVOLUTION IN TRAINING

CAPES – Core to Digital Twin and Training Devices

Development Rigs

CAPES

*CAPES (Core AERALIS Platform and Environment Simulation)

THALES

Core AERALIS Platform and Environment Simulation (CAPES)

Example

So far- Augmented Reality Cockpit

OTW Image

USB Controls

LAD Image / Touch

Out The Window View

CIGI data

AERALIS Flight Model

CIGI data

Large Area Display (LAD) Mockup

CAPES Rig Relationship

- CAPES is the central element which can be drawn upon by each of the rigs, and in the future will form the basis for any type of training device
- As models get integrated into CAPES, it can be physically deployed to each of the development rig as an update.
- The composition of CAPES can vary dependant on the rigs requirement for hardware in the loop and elements that either need to be stimulated or emulated
- This composition principle is the same for future training devices. Forming the basis of a Training Ecosystem.

CAPES in use

THALES

Systems

- The use of modelling and simulation for applications other than training is growing fast to support the Multi-Domain Integrated approach
 - Operational analysis
 - Decision support
 - > Flexible force training and deployment
 - > Mission preparation
- New platforms (e.g. AERALIS) built with data driven digital Threads form part of this framework of this new approach
 - ➤ Higher performance, more flexible and reliable platforms
 - > Faster to certify, manufacture and deploy
 - Reduced through life environmental impact and cost
 - ➤ More effective interoperable systems for the Multi Domain Integrated approach

Follow Up

For more information contact:

Simon Skinner

E: simon.skinner@uk.thalesgroup.com

T: +44 7583 010243

David Head

E: david.head@uk.thalesgroup.com

T: +44 7976 123414

THALES GROUP OPEN RELEASABLE TO PUBLIC